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Abstract

We have developed a general technique to study the dynamics of the quantum adiabatic evolution

algorithm applied to random combinatorial optimization problems in the asymptotic limit of large

problem size n. We use as an example the NP-complete Number Partitioning problem and map

the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying

Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum

exit ation gap, groin = O(n 2-n/2), corresponding to the exponential complexity of the algorithm

for Number Partitioning. The key element of the analysis is the conditional energy distribution

computed for the set of all spin configurations generated from a given (ancestor) configuration by

simultaneous flipping of a fixed number of spins. For the problem in question this distribution is

shown to depend on the ancestor spin configuration only via a certain parameter related to the

energy of the configuration. As the result, the algorithm dynamics can be described in terms of

one-dimensional quantum diffusion in the energy space. This effect provides a general limitation

of a quantum adiabatic computation in random optimization problems. Analytical results are in

agreement with the numerical simulation of the algorithm.
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I. INTRODUCTION

Since the discovery by Shor [1] nearly a decade ago of a quantum algorithm for effi-

cient integer factorization there has been a rapidly growing interest in the development of

new quantum algorithms capable of solving computational problems that are practically

intractable on classical computers. Perhaps the most notable example is that of a combina-

torial optimization problem (COP). In the simplest case the task in COP is to minimize the

cost function ("energy") Ez defined on a set of 2_ binary strings z = {zi,...,zn} zj = O, 1,

each containing n bits. In quantum computation this cost function corresponds to a Hamil-

tonian Hp

z

(1)

where zj = 0, 1 and the summation is over 2 _ states Iz) forming the computational basis

of a quantum computer with n qubits. State Izj}j of the j-th qubit is an eigenstate of the

Pauli matrix c_z with eigenvalue Sj = 1 - 2zj (S_ = +1). It is clear from the above that the

ground state of Hp encodes the solution to the COP with cost function Ez.

COPs have a direct analogy in physics, related to finding ground states of classical spin

glass models. In the example above bits zj correspond to Ising spins Sj. The connection

between the properties of frustrated disordered systems and the structure of the solution

space of complex COPs has been noted first by Fu and Anderson [2]. It has been recognized

[3] that many of the spin glass models are in almost one-to-one correspondence with a

number of COPs from theoretical computer science that form the so-called NP-complete

class [4]. This class contains hundreds of the most common computationally hard problems

encountered in practice, such as constraint satisfaction, traveling salesmen, and integer

programming. NP-complete problems are characterized in the worst cases by exponential

scaling of the running time or memory requirements with the problem size n. A special

property of the class is that any NP-complete problem can be converted into any other NP-

complete problem in polynomial time on a classical computer; therefore, it is sufficient to

find a deterministic algorithm that can be guaranteed to solve all instances of just one of the.

NP-complete problems within a polynomial time bound. It is widely believed, however, that

such an algorithm does not exist on a classical computer; whether it exists on a quantum



computer is one of the central openquestions.Ultimately, onecanexpect that the behavior

of new quantum algorithms for COPs and their complexity will be closely related to the

propertiesof quantum spin glasses.

Recently,Farhi and co-workerssuggesteda new quantum algorithm for solvingcombina-

torial optimization problemswhich isbasedon the propertiesof quantumadiabatic evolution

[5]. Running of the algorithm for severalNP-completeproblemshas beensimulated on a

classicalcomputer using a large number of randomly generatedproblem instancesthat are

believedto becomputationally hard for classicalalgorithms [6-9]. Resultsof thesenumerical

simulations for relatively small sizeof the problem instances( n < 20) suggest a quadratic

scaling law of the run time of the quantum adiabatic algorithm with n. Furthermore, it was

shown in [10] that the previous query complexity argument that led to the exponential lower

bound for unstructured search [11] cannot be used to rule out the polynomial time solution

of NP-complete Satisfiability problem by the quantum adiabatic algorithm.

In [10, 12-15] special symmetric cases of COP were considered where symmetry of the

problem allowed the authors to describe the true asymptotic behavior (n _ oc) of the

algorithm. In certain examples considered in [5, 13] the quantum adiabatic algorithm finds

the solution in time polynomial in n while simulated annealing requires exponential time.

This effect occurs due to the special connectivity properties of the optimization problems that

lead to the relatively large matrix elements for the spin tunneling in transverse magnetic

field between different valleys during the quantum adiabatic algorithm. In the examples

considered in [13] the tunneling matrix element scales polynomially with n. On the other

hand, in simulated annealing different valleys are connected via classical activation processes

for spins with probabilities that scale exponentially with n. It was also shown for certain

simplified examples [14, 15], that quantum adiabatic algorithm can be modified to completely

suppress the tunneling barriers even if the corresponding classical cost function has local

minima well separated in the space of spin configurations.

However, so far there are no study on the true asymptotic behavior of the algorithm

for the general case of randomly generated hard instances of NP-complete problems. Also

there are no analysis of the limitations of the quantum adiabatic computation arising from

the intrinsic properties of disorder and frustration in this problems. Such analysis is of the

central interest in this paper.

In Sec. II we introduce the random Number Partitioning problem and describes condi-
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tional cost distributions (neighborhoodproperties) in this problem. In Sec.III wedescribe

the conceptof quantum adiabatic computationapplied to combinatorial optimization prob-

lemsand introducea Greenfunction methodfor the analysisof the minimum gap. In Sec.IV

wedescribethe effectof quantum diffusion in the algorithm dynamics,derivethe scalingfor

the minimum gap and the complexity of the algorithm for the randomNumber Partitioning

problem. We alsoobtain the scalingof the minimum gap numerically from the form of the

cumulativedensity of the adiabatic eigenvaluesat the avoided-crossingpoint. In Sec.V we

discussthe resultsof the simulations of the time-dependentSchrSdingerequation to sim-

ulate quantum adiabatic computation for Number Partitioning and obtain its complexity

numerically.

II. NUMBER PARTITIONING PROBLEM

Number Partitioning Problem (NPP) is oneof the six basicNP-completeproblems that

areat the heart of the theory of NP-completeness[4]. It canbeformulated asa combinatorial

optimization problem: Givena sequenceof positive numbers{al,. •., an} find a partition,

i.e. two disjoint subsets ,A and A', such that the residue

E= (2)
aj CA aj EA r

is minimized. In NPP we search for the bit strings z = {zl,..., Zn} (or corresponding Ising

spin configurations S = {S1,..., Sn}) that minimize the energy or cost function Ez

n

E,. = i sl, =  ajSj, Sj = 1- 2zj, (3)
j=l

where Sj = 1 (zj = 0) if aj C ,4 and S i = -1 (zj = 1) ifaj E .,4'. The partition S

with minimum residue can also be viewed as the ground state of the Ising spin glass, -t2_,

corresponding to the Mattis-like antiferromagnetic coupling, Jij = -ai aj.

NPP has many practical applications including multiprocessor scheduling [16], cryptogra-

phy [17], and others. The best deterministic heuristical algorithm for NPP, the differencing

method of Karmakar and Karp [18], can find with high probability solutions whose energies

are of the order 1/n _ log ,_ for some a > 0. The interest in NPP also stems from the re-

markable failure of a standard simulated annealing algorithm for the energy function (3) to
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find good solutions, as comparedwith the solutions found by deterministic heuristics [19].

The apparent reasonfor this failure is due to the existenceof order 2_ local minima whose

energiesare of the order of 1/n [20] which underminesthe usual strategy of exploring the

spaceof the spin configurationsS through singlespin flips.

The computationalcomplexityof randominstancesof NPP dependson the numberof bitsQ

b needed to encode the numbers aj. In what follows we will analyze NPP with independent,

identically distributed (i.i.d.) random b-bit numbers aj. Numerical simulations show [21, 22,

26] that solution time grows exponentially with n for n << b then decreases steeply for n > b

(phenomenon of "peaking") and eventually grows polynomially for n >> b. The transition

from the "hard" to computationally "easy" phases at n _ b has features somewhat similar

to phase transitions in physical systems [23]. The detailed theory of the phase transition in

NPP was given in Refs. [24, 25]. If one keeps the parameter _ = b/n fixed and lets n _ oc

then instances of NPP corresponding to _ > 1 will have no perfect partitions with high

probability. On the other hand for _ < 1 number of perfect partitions will grow exponentially

with n. Transitions of this kind were observed in various NP-complete problems [28]. In

what follows we will focus on the computationally hard regime _ >> 1.

A. Distribution of signed partition residues

In Fig. 1 we plot an array of 2'_ partition energies E_. = lftzl sorted in increasing order.

While the values of individual energies are random and depend on the particular instance

of NPP (i.e., the set of numbers aj) it can be inferred from Fig. 1 that on a coarse-

grained scale (i.e. after averaging over individual energy separations) the form of the typical

energy distribution is described by some universal function for randomly generated problem

instances. To describe it we introduce for a given set of randomly sampled numbers aa a

coarse-grained distribution function of signed partition residues f2z (3)

P(f2) 2- _ 1 fa+Aa/2= dq E 6(,-ftz). (4)

Here 6(x) is the Dirac delta-function; the sum is over 2 n bit-strings z and 2 -n is a normal-

ization factor. In (4) we average over an interval A_2 of the partition residues whose size is



chosenself-consistently,Af_ >> 2-'_/P(f_). Using (3) we can rewrite (4) in the form

1/0 = ds¢ I(s) (5)
n

I(s) = Hc°s(aj s), ((z) = sin(x)/x.

j=l

Here ((x) is a window function that imposes a cut-off in the integral (5) at s _ 2/ALL For

large n this integral can be evaluated using the steepest descent method. In the following

we shall assume that the b-bit numbers aj are distributed inside of the unit interval [0, 1]

and are integer multiples of 2 -b, the smallest number that can be represented with available

number of bits b. We note that for large n the fimction I(s) has sharp maxima (minima)

with width ,.o n-l� 2 at the points sk = kn-2 b, k = 0, 1,...; lI(sk)I = 1. Only one saddle

point at s = 0 contributes to the integral in (5) due to coarse-graining of the distribution (4).

Indeed, it will be seen below that the window size 2/At2 can be chosen to obey the conditions

1 << nl/2/At2 << 2 _. Therefore in the case of high-precision numbers, b >> n, saddle-points

sk with k > 0 lie far outside the window and their contributions can be neglected (see also

Appendix A). On the other hand the window function ¢(z) can be replaced by unity while

computing the contribution from the saddle-point at s = 0. Finally we obtain for If_[ << n

(cf. [29])

1 exp + O(n -3/2 )
P(r ) = 2o- (o)

n

_ 2 (E << n) (6)o.2(0) = 1 _ aj

j=l

The coarse-grained distribution P(f_) depends on the set of aj's through a single self-

averaging quantity _(0) (of. [23]).

One can also introduce the distribution/5(E) of cost values (energies) E_. = [f_-.t. Due to

the obvious symmetry of the NPP, the cost function Ez in (3) does not change after flipping

signs of all spins, Sj -+ -Sj. Therefore

P(E) = 1/2P(-I-E). (7)

We emphasize that, according to Eq. (6) for a typical set of high-precision numbers aj the

energy spectrum in NPP is quasi-continuous, and there are only two scales present in the

distribution/5(E)" one is a "microscopic" scale given by the characteristic separation of the



individual partition energies,Emin, and another is given by the mean partition energy {E>

(or the distribution width (E2) 1'2)

Emin _ °'(0) _1/2 2-n, <E 2} = 2<E)2 = n_2(0). (8)

This justifies the choice for Af_ above that corresponds to coarse-graining over many indi-

vidual energy level separations.
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FIG. h Dotted plot is a normalized distribution of partition energies Ez = tf_zl defined in

Eqs. (4),(7). Size of the input n = 20, precision b = 35. Insert: plot of partition energies E_.

sorted in increasing order (k gives the position of partition energies E_. in a sorted array). Asymp-

totic result based on Eq. (6) is visually indistinguishable from the exact result.

We note that the distribution P(f_) (6) is Gaussian for E << n and can be understood

in terms of a random walk with coordinate f_ using Eq. (3). The walk begins at the origin,

= 0, and makes a total of n steps. At the j-th step f_ moves to the right or to the left

by "distance" 2 aj if Sj = 1 or Sy = -1, respectively. In the asymptotic limit of large n the

result (6) corresponds to equal probabilities of right and left moves and the distribution of

step lengths coinciding with that of the set of numbers {2 aj}.

Finally, the energy distribution function P(E) of the form (6),(7) was previously obtained

by Mertens [29] using explicit averaging over the random instances of NPP. He also computed

the partition function Z(T) for a given instance of NPP at a small finite temperature T using

the steepest-descent method and summation over the saddle-points sk = k_r 2 b similar to our

discussion above [23] (in his analysis kB T played a role similar to our regularization factor

A_ in (4),(5)).

We emphasize however, that the approach in Ref. [23] based on Z(T) is necessarily
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restricted to the analysis of the "static" properties of NPP at E _ 2 -n, i.e., the phase

transition in the number of perfect partitions [23] when the control parameter _ = n/b

crosses a critical value. On the other hand distribution P(9) (4) introduces at finite energies,

as well as the conditional distribution introduced in the next section also allow us to directly

study the intrinsic dynamical properties of the problem in question such as the dynamics of

its quantum optimization algorithms.

B. Conditional distribution of signed partition residues

Consider the set of bit-strings z' obtained from a given string z by flipping r bits. The

conditional distribution of the partition residues fL., (3) in the r-neighborhood of z can be

characterized by its moments:

(:)( ftk} = E (f_,)k 6r,D(_',_), k= 1,2,... (9)

zt6{0,1} n

Here 6m,l is a Kronecker delta and function D(z, z') computes the number of bits that take

different values in the bit-strings z and z'. It is the so-called Hamming distance between the

two strings
n

D(z,z') = 4 • (10)
j=l

The Hamming distance r = D(z, z') between the bit-strings is directly related to the overlap

factor q between the corresponding spin configurations often used in the theory of spin

glasses [3, 29]:
n

1E SiS _ 1 2D(z, z'). (11)
q=n n

j=l

(in what follows we shall use both quantities r and q). For k = 1, 2 in (9) one obtains after

straightforward calculation the first and second moments of the conditional distribution

(a) =qa ,

(f_2>_(a>2=na2(q) 1+-- 1
n--1

2r
c_(q) = a(0) (1 - q2)1/2, q = 1 - --

n

(12)

(13)

(14)

where or(0) and <E 2} are given in (6) and (8), respectively.



The conditional distribution of f_,., can also be defined in a way similar to (4)

(?)-i 5(w_ aTD(.,z) (15)Pr'"(fY) = 2fY a_,-_,n,/2 z,_(o,1}-

where averaging is over the small interval AfY that, however, includes many individual

values of f_, for a given r. It is clear from (12),(13) that the first two moments of Pr,.(fY)

depend on z only via the value of f_z- This does not hold true, however, for the higher-

order moments that depend on other functions of z as well. For example, (f2 a) involves the

n a(1 - 2zj), etc.quantity Ej=I aj

Our main observation is that in the asymptotic limit of large n the conditional distri-

bution P_,z(fY) is well-described by the first two moments (12),(13). Then, according to

the discussion above, its dependence on z is only via f_. The detailed study of the higher

moments (9) will be done elsewhere. Here we use the following intuitive approach relevant

for analysis of the computational complexity of the quantum adiabatic algorithm for the

NPP. We average P_,,.(fY) over the strings z with residues f_,. inside a small interval Af_

(containing, however, many levels f_,.). After such averaging the result, P_(f2'lfl), can be

written in the form

Pr(fY, a) (16)

P (a'la) = P(a)'

P,(H',f_) =2 -n 1 fa+aa/2

Aft Jn-aa/2 _e{o,1)"

where P(H) is given in (6). We note that Eq. (16) formally coincides with the Bayesian

rule expressing the conditional distribution function through the 2-point (joint)

distribution function Pr(f2', f_) and the single-point distribution P(f_) (6).

The explicit form of Pr(Hlf_) is derived in Appendix B in a manner similar to the deriva-

tion of P(E) in Sec. IIA. The results are presented in Eqs. (B9) and (B10). They show

that Pr(_', H) in the limit n >> 1 is indeed well described by its first two moments that cor-

responds precisely to the expressions given in Eqs. (12),(13) above. From this we conclude

that

= (is)

In the case r = 1 there are n strings z' at a Hamming distance 1 from the string z.

Partition energies corresponding to these strings equal I_s - 2ajSjl, 1 < j < n (cf. (3)).



After the coarse-graining over the energy scale (.9(l/n) in the range, I l, I '1 << _, the

conditional distribution Pr,_. is a step function in the interval _,. - _t' C [-2, 2]. For r = n - 1

one has the same form of the distribution but for _z + fi'. Both results correspond to

nearly equal distribution of spins between between +1 values. Then in the range of energies

I_'1, Ifiz[ < 1 one has:

pr,,_(_t')_P_=l/2+O(1), r=l,n-1 (n>>l) (19)

For r, n - r >> 1 distribution Pr,,.(_') has a Gaussian form with a broad maximum at

_'= q_,_ (cf. Eqs. (12),(13),(B9)). Near the maximum we have:

1 [fi,[, <<nl/2cr(q). (20)

We studied the conditional distribution in NPP numerically as well (see Fig.2 and Sec.B).

The results are in good agreement with theory even for modest values of n < 30.

The characteristic spacing between the values of the partition residues in the subset of

strings z' with D(z', z) = r is 1/(/5_ (_)) for not too large E_,E,., (see above). This spacing

decreases exponentially with the magnitude of the string overlap factor, Iql = I(r_- 2r)/n].

The hierarchy of the subsets corresponding to different values of Iql form a specific structure

of NPP. We note that the distribution of partition residues within the hierarchy is nearly

independent of the ancestor string z in a broad range of energies E' < n t/2 where P_,.(E')

/5. One can see that the magnitude of the overlap factor q between two strings with energies

within a given interval [0, E] is limited by some typical value c7 satisfying the following

equation: r

?3,

The smaller E is, the smaller Iql is= strings that are close in energy are far away in the

configuration space. This property gives rise to an exponentially large number of local

minima for small values of E,. that are far apart in the configuration space. For example,

strings with E,. _-, Smin typically correspond to [ql = O(1/n), they can be obtained from

each other only by simultaneously flipping clusters with _-, n/2 spins.

Eq. (21) describes the dynamics of a local search heuristic (e.g., simulated annealing).

It shows that the average cost value E during the search decreases no faster than O(1/M)

where M = O ((_)) is the number of generated configurations. This result coincides with

that obtained in [29] using a different approach. It says that any classical local search
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FIG. 2: Plots of the (scaled) conditional distribution (15) s = a(O)(27rn) 1/2 (AQ) -1 foAn d_ Pr,z(r/)

vs r are shown with points. We use coarse-graining window AFt=0.3. Different plots correspond to

29 randomly selected bit-strings z with energies ]ftzl E [0, 0.3] for one randomly generated instance

of NPP with n = 30 and b = 35. For r, n - r >> 1 the values of s corresponding to different strings

are visually indistinguishable from each other. Dashed line is a plot of a(O)/cr(q) vs r given in

(13) (q = 1 - 2r/n). Insert: plots of the integrated quantity given in (Bll), Q = ½ f: dr/Pr,z(rl)

vs x = Q/(cr(q)v/_), for different values of r = 2,..., n/2 and randomly selected bit-string z with

energy ]Qzl close to 0. All plots correspond to the same instance of NPP as the main figure. Plots

for different values of r are visually indistinguishable from each other and from the theoretical

curve given in (B12).

heuristic for NPP cannot be faster than random search. Indeed, during local search the

information about the "current" string z with Ez < 1 is being lost, on average, after one

spin flip (eft Eqs. (19),(20)). We show below that precisely this property of NPP also leads

to the complexity of the quantum adiabatic algorithm corresponding to that of a quantum

random search.

We note that one can trivially break the symmetry of NPP mentioned above by introduc-

ing an extra number a0 and placing it, say, in the subset A. In this case different partition

energies will still be encoded by spin configurations S = {$1,..., S_} (or corresponding bit-

strings z) with f_s = ao+__,j_=l Sj aj and E_. = If_sl (cf. 3). We shall adopt this approach in

the analysis of the performance of the quantum adiabatic algorithm for NPP given below.
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III. QUANTUM ADIABATIC EVOLUTION ALGORITHM

In the quantum adiabatic algorithm [5] one specifiesthe time-dependentHamiltonian

H(t) = fI(t/T)

/J(T) = (1 -- T) V + T Hp, (22)

where T = t/T is dimensionless "time". This Hamiltonian guides the quantum evolution

of the state vector I¢(t)) according to the Schr6dinger equation iOl_(t))Ot = H(t)[y)(t))

from t = 0 to t = T, the run time of the algorithm (we let h = 1). Hp is the "problem"

Hamiltonian given in (1). V is a "driver" Hamiltonian, that is designed to cause transitions

between the eigenstates of Hp. In this algorithm one prepares the initial state of the system

_b(0) to be the ground state of/_(0) = V. In the simplest case

n

v = - = 2 Iz), (2a)
j=l z

where cra_is a Pauli matrix for j-th qubit. Consider instantaneous eigenstates I¢_(T)) of

/2/(V) with energies A_(T) arranged in nondecreasing order at any value of T C (0, 1)

HIe,) = a,l¢,), , = 0,1,..., 2n - 1. (24)

Provided the value of T is large enough and there is a finite gap for all t C (0, T) between

the ground and excited state energies, g(r) = Al(r) - k0(r) > 0, quantum evolution is

adiabatic and the state of the system I_(t)} stays close to an instantaneous ground state,

I¢o(t/T)) (up to a phase factor). Because H(T) = Hp the final state I_(T)} is close to the

ground state 1¢0(r = 1)} of the problem Hamiltonian. Therefore a measurement performed

on the quantum computer at t = T (r = 1) will find one of the solutions of COP with large

probability.

There is a broad class of COPs from theoretical Computer Science where the number of

distinct values of a cost function scales polynomially in the size of an input n. An example

is the Satisfiability problem in which the cost Ez of a given string z equals the number

of constrains violated by the string. For those problems, the spectrum of H(T), at the

beginning (r _ 0) and at the end (r _ 1) of the algorithm, consists of a polynomial number

of well-separated energy levels. Quantum transitions away from the adiabatic ground state

occur most likely near the avoided-crossing points r _ T* where the energy gap g(r) reaches

its minima [9]. Near the avoided-crossing points, the spectrum of H(r) is quasi-continuous,
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with the separationbetweenindividuals eigenvaluesscaleddown with n. The probability of

- tgo(t/T))lt=r, is small provided thata quantum transition, 1 i(_b(t ) , 2

T >> L<¢ILLr,.L¢°>I':'" = A0 ,2 , groin min (r)- (r)] (25)
gmin 0<,.<1

(f-I,- = dbI/dr). The fraction in (25) gives an estimate for the required runtime of the

algorithm and the task is to find its asymptotic behavior in the limit of large n >> 1. The

numerator in (25) is less than the largest eigenvalue of/:L = Hp - V, typically polynomial

in n [5]. However, gmin can scale down exponentially with n and in such cases the runtime

of the quantum adiabatic algorithm will grow exponentially with the size of COP.

A. Implementation of QAA for NPP

As suggested in [5] the quantum adiabatic algorithm can be recast within the conventional

quantum computing paradigm using the technique introduced by Lloyd [30]. Continuous-

time quantum evolution can be approximated by a time-ordered product of unitary op-

erators, e -i(1-rk)V_ e--i,.kHP6, corresponding to small time intervals (tk,tk + _). Operator

e-i(l-rk)Va typically corresponds to a sequence of 1- or 2-qubit gates (el. (23)). Operator

e -irkHP_ is diagonal in the computational basis Iz) and corresponds to phase rotations by

angles E_.a. Since in the case n << b, the average separation between the neighboring values

of Ez is 1/P(E) = (-9(2-'_), the quantum device would need to support a very high precision

in its physical parameters (like external fields, etc.) to control small O(2-") differences in

phases. Since this precision scales with n exponentially it would strongly restrict the size

of an instance of NPP that could be solved on such a quantum computer. This technical

restriction is generic for COPs that involve a quasi-continuous spectrum of cost-function

values. Among the other examples are many Ising spin glass models in physics (e.g., the

Sherrington-Kirkpatrick model [3]). To avoid this restriction we introduce a new oracle-type

cost function g,. that returns a set of values

> ck), (26)

that can be stored using a relatively small number of bits CO(logn). For example, we can

divide an interval of partition energies (0, B), B = _}----o aj into bins whose sizes grow
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exponentially with the energy.Then the new cost will take onevalueper bin

c(z) = ck =- -M + k for _ ___Izl < _k+l,

cok=(2 k-1) A, k=0,...,M.
(27)

The last bin is co,_i _< 1_2zl < B where we have gz = CM = 0. The value of the cutoff WM < B

is discussed below. In this example the Hilbert space of 2" states lz} is divided into M + 1

subspaces gk, each determined by Eq. (27) for a given k

M

up = Lz/Izl. (281
k=O z6£_

Note that subspace E0 contains the solution(s) to NPP. Dimension do of £0 is controlled

by the value of A in (27) which is another control parameter of the algorithm. We set

5 = 2 -" K/P(O) where the integer K _ do >> 1 is independent of n and determines how

many times on average one needs to repeat the quantum algorithm in order to obtain the

solution to NPP with probability close to 1.

Operator Hp projects any state l@ onto the states with partition residues in the range

0 <_ If_l < WM. If we choose

i < WM << <E>, (29)

then the distribution function (6) is nearly uniform tbr If2zl _< WM. Therefore the dimensions

of the subspaces £k grow exponentially with k: dk = do 2 k for k < M. This simplification

would not affect the complexity of a quantum algorithm that spends most of its time in "an-

nealing" the system to much smaller partition residues, c<_ >> ]Q,] _ Emin = O( nU2 2-n) •

We note that the new discrete-valued cost function defined in (27) is non-local. Unlike

problems such as Satisfiability, it cannot be represented by a sum of terms each involving a

small number of bits. To implement a unitary operator e -iTkHe6 with Hp given in (28) one

needs to implement the following classical function on a quantum computer

?%

g,. = @(WM --If_zl) log2 + WM ' 9:1

Here Ix] denotes the integer part of a number x; 6)(x) is the theta-function (@(x) = 1 for

x > 0 and O(x) = 0 for x < 0). The implementation of (30) with quantum circuits involves,

among other things, the addition of n numbers together with their signs to compute f_., and

taking the discrete logarithm of a b-bit number with respect to base 2. These operations
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canbe performed using a numberof quantum gatesthat is only polynomial in n and b (cf.

[1] for the implementation of the discrete logarithm).

Since the implementation of a cost function (26),(30) does not add an exponential over-

head to the complexity of QAA the feasibility of this algorithm for NPP depends on the

scaling of the minimum gap gmin with n.

B. Stationary Schr6dinger equation for adiabatic eigenstates

We now solve the stationary Schr6dinger equation (24) and obtain the minimum gap gmin

(25) in the asymptotic limit n _ ec. To proceed we need to introduce a new basis of states

Ix) = Ixl)l ® [x2}2 ®'" "® [x,_)n where state ]xj}j is an eigenstate of the Pauli matrix 6_ for

the j-th qubit with eigenvalue 1 - 2xj = +1. Driver Hamiltonian V can be written in the

following form:
n

1/= E VmZm' Zm = E ]x)<xl" (31)
m_0 2: t t-" "-]- Xn :rr_

For a particular case given in Eq. (23) we have I_ = 2m - n. Matrix elements of Z TM in a

basis of states [z) depend only on the Hamming distance D(z, z') between the strings z and

Z I

(32)

I t : 2-" E n- r (_1) p Am ,
q=O p=0 q

We now rewrite Eq. (24) in the form

q+p"
(33)

Hpl¢}, a---a(T)=l--T, (34)I¢)- a -

(we drop the subscript 7/indicating the number of a quantum state and also the argument r

in ¢ and A). From (27)-(34)we obtain the equation for the amplitudes ¢_. = (zl¢) in terms

of the coefficients I_

"r,:F2 -'_
+ (35)

[1- TG0 c(f2,)] ¢,- A- al/_ ,,#,

" r?
Or =_ Gr(A) = A - Ctl/'m

rn=l

0<r<n.
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Hereweseparatedout a "symmetric" term o<2-'_ correspondingto the coupling between

the states Iz>via the projection operator 2r° (31).

IV. MINIMUM GAP ANALYSIS

A. Coarse-graining of the transition matrix

We now make a key observation that Cz in (35) can be determined based on the properties

of the conditional distribution Pr,z(E) (15) and the form of the Green function Gr(A). We

sum the Green function GD(,.,_.,) over all possible transitions from a given state z' to states

z' -¢ z with energy ok. For not too large partition residues of the initial and final states we

obtain

E GD(,.,,.,)(A) _ Fk(.X) + f_,,k(.X) (36)

zE£k,z_z'

rk(A)- ,s(A)
2M-k ' /o (:)=

(1 - 2r/n) Gr(A) (37)

2_M (38)

Function o-(q) above is defined in (14) and f_,,k(A) is a small correction described below. In

function s(A) we replaced summation over the integer values of r by an integral. It can be

evaluated using the explicit form of GT(A) that decays rapidly with r. In what follows we

will be interested in the region IA - aVol << 1 where

-1En-r 2-n (rn;r)l_ 2 -n (lnr + _y). (39)

rn=l

(7 is Euler's constant) and s(A) _ -In 2/(2a). We note that

[
r) , n/2 - r >> 1. (40)_2_ Gr_

Therefore the integrand in s(A) is a smooth function of r for r < n/2 and quickly decays to

zero for r > n/2. The contribution to the integral in s(A) from the range of r << n is small

We note that term Fk in (36) provides an "entropic" contribution to the sum in (36). It

comes from the large number of states z C Z;k corresponding to large Hamming distances
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n -1

r from the state z', 1 << r _< n/2. Each state contributes a small weight, Gr cx (r) ' and

number of states for a given r is large, (wk+l - wk)(_) Pr >> 1. Here (ak+l - wk) is an

energy bin for the subspace £k and/°r is the conditional density of states described in Sec.

II. The size of the bin scales down exponentially with k (cf. (27)) and so does the entropic

term Fk. Below a certain cross-over value of k one has [Fk[ << If,,,,k(A)[- In this case the

dominant contribution to the sum (36) comes from the states z with small r = D(z, z') _ 1.

In particular for k = 0 one can obtain

G (A) E _l,D(z',,,,) + O(n-3), (41)
wC£o

where the higher-order terms correspond to D(z', w) > 2. According to (39), ICl(A)t _ n -2

and therefore If..,01is exponentially larger than the entropic term, IF01 _ w0 "_ do 2 -_. We

note that, unlike the entropic term, fz,,0 strongly depends on z' due to the discreteness of

the partition energy spectrum (w0 n << 1). E.g., depending on a state z', in this case there

could be either one or none of the states w E £0 in the sum (41) satisfying D(z', w) = 1.

B. Extended and localized eigenstates

Based on the discussion above we look for solution of Eq. (35) in the following form:

(42)

where we have explicitly separated out a part of the wavefunction v(fl,) that depends on z

only via the corresponding value of the partition residue. It satisfies the following equations:

r_2_ n f_c[I_TGo(A) c(_)] v(Q)_ A_aV ° + T df_' v(ft')c(Q')X(f_,f_,A), (43)

r=l

where • is given in (35) and function c(x) takes a set of discrete values (26). Using (35),(42)

and (43) we obtain equations for u_

M

k'=l z'e& weCo (45)
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Decomposition (42) is only applied to amplitudes ¢7. with z _ £0. The system of equations

for the components v(ft) and u,. is closed by adding Eq. (35) for the amplitudes ¢w with

w E E0 (ground states of the final Hamiltonian He) and taking (42) into account. We note

that Eq.(43) for v(f_) is coupled to the rest of the equations only via the symmetric term

_=_+_+_0

/?= 2'_ d_P(_)v(_) 4x),
O0

M

k=l z6_k w6£o

(46)

(47)

where distribution P(f_) is given in (6).

I. Minimum gap estimate/or WM << (E}

We will analyze the above system of equations (42)-(47) assuming that the cutoff fre-

quency tOM satisfies Eq.(29). This condition corresponds to the linear region in the plot of

the cumulative density of states given in insert to the Fig. II A. According to Eqs. (6),(19),

in this range the distribution functions P(f_) _ P, V2 and Pr(ft']_) ,_ P,- take nearly constant

values and spectral function x(fY, f_, A) equals

s(A) (48)
_(a',e, A)_ v/2_n_2(o).

where s(A) is given in (37). In this approximation, we can compute _ using equations for

u,. in (45) and also the relations in (36), (37)

X
(49)

In the initial stage of the algorithm the amplitudes Cw of the "solution" states are small

I(Fol = 0(2-n/2). According to (49), we also have I_l = O(2-_/2). Neglecting these terms

and setting (F _ _, Eq. (43) gives a closed-form algebraic equation for A

1+27-# A-c_V0 +s(A) =0. (50)

Expanding in a small parameter # << 1 (cf.(29),(38)), we obtain the eigenvalue

A_(_)_(_)v0 2_ 2(_)21n2- + 0(9) (_ >>_), (51)
Ol
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that accurately tracks the adiabatic ground state energy, A0(T), from 9- = 0, up until small

vicinity of the avoided-crossing, T _ r* (see below) where I_01~ 1.

In the avoided-crossing region, branch A_(_-)intersects with another branch, Ao/(7-), that

tracks Ao(7-) in the interval of time following the avoided-crossing, T* < 7- _< 1. This branch

corresponds to _ << _0, _. It can be obtained from simultaneous solution of equations for uz

(45) and Cw that are approximately decoupled from Eq. (43) after _ is neglected. Keeping

this term in (45) gives rise to repulsion between branches A_'f(T) at 9- = T* that determines

the minimum gap gmin (see below).

To proceed, we obtain the equation for _o by adding equations for amplitudes ¢w that

correspond to different states w E £0 and neglecting the coupling between these states

separated by large Hamming distances, D(w, w') ,,_ n/2. It can be shown using Eqs. (35)

and (41)-(45) that % enters equation for 4)o through the term

_2c0_ &/_,0(a)_., (52)
z_£o

which isisa self-energyterm corresponding to elementary bit-flipprocesseswith initialand

finalstatesbelonging to the subspace/2o (loop diagrams).

To express Uz in (52) through Cw we solve Eq. (45) using order-by-order expansion in a

small parameter n-I (cf.Eqs. (36)-(41)and discussionthere>.In particular,one can show

that to the leading order inn -I the self-energyterm (52)isdetermined by lowest-orderloops

with two bit flipsthat begin and end at _0- Then aftersome transformations,the equation

for _0 takes the form

¢0 a - _co a _ a - ,£., a - _Vo+ _(a) . (53)
z'_£o

Here a = 1 - v- (cf. (34) and _ is defined above. We now solve Eq. (53) jointly with (43) and

obtain a closed-form equation for I. We give it below in the region of interest I_- - 1/21 << 1

(A- a_(_))(A- a_o(,))= --22-"a2/4

,_1/2 (1 + #_-* In 2 + 0(#2))_'*0

(54)

where the branch Ai0(v) is given above and the branch Af(T) satisfies Eq. (53) with r.h.s.

there set to zero,

Aeo(_)_ _co - 1/2, IT- 1/21 << 1. (55)
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Avoided-crossingin (54) takesplaceat T = T*

1 1 do

A_(T*) = Af0(T*), T* _ _ + _nn l°g2 --"#

The value of minimum gap between the two roots of (54) equals

(56)

gmin = n/_ 2 -n/2. (57)

where A is defined in (27).

Based on the above analysis one can also estimate the matrix element ~

n. Then from Eq. (25) (see also discussion after Eq. (28)) one can estimate the run-time of

the quantum adiabatic algorithm

d° [H;o_I O((ndo)-12"). (58)T>> 2
gmin

It follows from the above that eigenvalue branch A_(T) corresponds to a state,

zc{0,1}n

which is extended in the space of the bit configurations Iz)" according to (43) it contains a

large number (O(2n)) of exponentially small (O(2-_/2)) individual amplitudes. This state

originates at T = 0 from the totally symmetric initial state [_(0)) (23). In the small region

]T -- T*I ,o groin it is transformed into the state that corresponds to the eigenvalue branch

Af0(T) and is localized in Hamming distances D(z, w) near the subspace w E £0 containing

the solution to NPP [00) --_ _-_'_weco [w). Minimum gap at the avoided-crossing is determined

by the overlap between the extended and localized states.

At later times T > T* a similar picture applies to the avoided crossing of the extended-

state energy Ai0(v) with energies of localized states Af(T) corresponding to z E /:k with

1 _< k << n (excited levels of the final Hamiltonian Hp (28)). The existence of the extended

eigenstate of H(T) whose properties do not depend on a particular instance of NPP follows

directly from Eq. (43) that involves only a self-averaging quantity X(f2', f_, A). This quantity

varies smoothly over the broad range of partition residues [f_'l, If_[ < (E) and does not

allow for the compression of the wave-packet v(t2z) on the much smaller scale (..9(2-n). This

gives rise to an eigenstate with probability amplitude of individual states Iz) that depends

smoothly on energy in this range.
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FIG. 3: Dots correspond to the plot of the ground state amplitude (z[¢0) vs partition residue

If4[ evaluated at the avoided crossing point "r = _-* (thin lines connecting the dots are for display

purposes). Simulations axe done for the randomly sampled instance of NPP with n = 10 and

b = 20; the corresponding value of _-* _ 0.5. In simulations we relax the condition (29) and the
n

value of M in (27) is set automatically to be an integer closest to log 2 _-_j=0 aj (cf. (27)). Insert:

Dotted curves are the plots of the two lowest eigenvalues of H(T) vs r for the same instance of

NPP as in the main figure. Solid lines that start at r = 0 correspond to A = (1 - r)n + k with

k --- 0, 1 (cf. (51)). Solid lines that ends at 7- = 1 correspond to A = T Ek with k = 0, 1 (cf. (55)).

2. Analysis of the general case

The above picture of avoided-crossing remains qualitatively the same when the condition

(29) is relaxed (el. insert in the Fig. 3). Away from the avoided-crossing point, r < r*,

the ground state wavefunction v(f_,.) and energy A_(r) are obtained directly from Eq. (43)

with replacement • _ _ and Eq. (44) taken into account. Because the spectral function

X(fft, f_', A) changes only slightly on the scale/_min : O(rtU22.n) the wave packet _z v(f4)Iz)

remains extended, ]v(f_.] = O(2-'_/2), and therefore 4)o = O(2-'#2) •

Beyond the avoided-crossing point, T > _-*, the ground state is localized near w and

eigenvalue branch Aof(r) is obtained from Eq. (53) with r.h.s, set to zero (cf. Sec. IVB 1).

The point r = 7-* is located at the intersection of the two branches _(T) _ A0/(r) and the

21



level repulsion is of the order of the overlap factor between the extended and localized states

,.qmin ,.-4 E V(_'_w)_ 2-n/2. (59)

wE,do

Ground-state wavefunction ¢. at the avoided-crossing is shown in Fig. 3 for modest value

of n, but the separation into slowly- and rapidly-varying parts (42) is clearly seen.

We did not perform a direct numerical study of the dependence of gmin on /z since we

only simulated adiabatic eigenvalues for small instances of NPP. We argue, however, that

even for a fixed n the scaling of gmin with n can be inferred from the shape of the cumulative

density of states
), k._

r_(k) =fo dx Z rS(Ak - x) ' km = 2" - l, (60)
k=0

where kk --=Ak(r) are eigenvalues of H(T) (24). These eigenvalues are plotted in Fig. 4 near

the avoided-crossing r = r* where the spectrum of Ak is quasi-continuous. The shape of the

plot is well approximated by the square-root function:

A,7 _ const + , r/m = O(2n). (61)

It is clear that for r/ _ 1 we have A, _ 2 -hI2 which corresponds to Eq. (57). Note that

this qualitative analysis is based on the assumption that the asymptotic properties of A0 for

large n can be inferred from the behavior of k, for r/>> 1.

V. SIMULATIONS OF TIME-DEPENDENT SCHRC)DINGER EQUATION

We also study the complexity of the algorithm by numerical integration of the time-

dependent Schr6dinger equation with Hamiltonian H(t) and initial state 1,¢,(0)) defined

in Eqs. (22),(23),(27),(28). Here we relax the condition tOM << {E) used above in the

analytical treatment of the problem; in simulations the value of M is set automatically to

n

be an integer closest to log 2 _j=0 aj (cf. (27)). We introduce a complexity metric for the

algorithm, C(T) = (1 + T)do/Po(T) where po(t) = Y_weCo I¢w(t)l 2. A typical plot of C(T)

for an instance of the problem with n=15 numbers is shown in the insert of Fig. 4. At

very small T the wavefunction is close to the symmetric initial state and the complexity is

2n. The extremely sharp decrease in C(T) with T is due to the buildup of the population

po(T) in the ground level, g,. = Co, as quantum evolution approaches the adiabatic limit. At
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FIG. 4: Dotted line is plot of Av vs _ at the avoided-crossing T = _-*. It is obtained from the

numerical solution of the stationary SchrSdinger equation for the same instance of NPP as in

Fig. 3. Solid line is a square-root fit ,k = -6.3 + 0.35 @/2 (solid line is almost undistinguishable

from the dotted line).

certain T = Zmi n the function C(T) goes through the minimum: for T > Zmi n the decrease

in the number of trials do/Po(T) does not compensate anymore for the overall increase in

the runtime T for each trial. For a given problem instance the "minimum" complexity

Cmin = C(Tmin) is obtained via one dimensional minimization over T. The plot of the

complexity Cmin for different values of n in Fig. 1 appears to indicate the exponential

scaling law, Cmi n ,-o 2 TM for not too small values of n > 11.

VI. DISCUSSION

In conclusion, we have developed a general method for the analysis of avoided-crossing

phenomenon in quantum spin-glass problems and used it to study the performance of the

quantum adiabatic evolution algorithm on random instances of the Number Partitioning

problem. This algorithm is viewed as a "quantum local search" with matrix elements of

the Green function Gr (r = 1,..., n- 1) giving the quantum amplitudes of the transitions

with different number of spin flips r. Our approach is similar to the analysis of a quantum

diffusion in a disordered medium with the model of disorder defined by the one- and two-

point distribution functions P(12), Pr,z(_2').

We have shown that the conditional distribution of partition residues P_(ft'lf_) in the

neighborhood of a given string formed by all possible r-bit flips depends on the value of the
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FIG. 5: Logarithmic plot of Cmin v8 n for randomly generated instances of NPP with 25-bit

precision numbers. Vertical sets of points indicate results of different trials (_ 100 trials for each

n, except n=17 with 10 trials). Median values of Cmin are shown with rectangles. Linear fit to the

logarithmic plot of median values for n between 11 and 17 is shown by the line and gives In Cmin "_

0.55n (Cmin _ 2 TM) • Very close result is obtained for the linear fit if all data points are used

instead of the median values. Insert: plot of C(T) vs T for n=15, precision b=25 bits, do=22.

Point 1 indicated with the arrow refers to the minimum value of complexity at T = Train : 22.67

where the total population of a ground level p0(Tmin) --- 0.15. Point 2 refers to the value of T where

v0(T) = 0.r.

partition residue for that string but not on the string itself. This is a specific property of

the random Number Partitioning problem.

We used the above property to describe a quantum diffusion in the energy space

(Eq. (43)). This reduction in the dimensionality leads to the formation of the eigenstate

which is extended in the energy space. Near the avoided-crossing the adiabatic ground state

changes from extended to mostly localized near the solution to the optimization problem.

Because the extended and localized state amplitudes are nearly orthogonal to each other the

repulsion between the corresponding branches of eigenvalues (the minimum gap) is expo-

nentially small, gmin _ _ 2-_/2, and the run time of the algorithm scales exponentially with

n. Analytical results are in qualitative agreement with numerical simulations of the time-

dependent SchrSdinger equation for small-to-moderate instances of the Number Partitioning
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problem (n < 17).

One can show that the effect of quantum diffusion in reduced-dimensionalspacethat

leadsto the formation of the extendedstate can also occur in other random NP-complete

problems[31]. The method developedin this paperwill beappliedto study the performance

of continuous-time quantum algorithms for different random combinatorial optimization

problems. Also the presentframeworkcanbe applied to the analysisof quantum annealing

algorithms for combinatorial optimization problems [32, 33]. This is a classicalalgorithm

that is conceptually very closeto the quantum adiabatic evolution algorithm considered

above [34]. The former usesthe Quantum Monte Carlo method to simulate on classical

computers a partition function and ground-stateenergyof a quantum system with slowly

varying Hamiltonian that mergesat the final momentwith the problem Hamiltonian of a

given classicaloptimization problem. Among other possibleapplications of our method is

the analysisof tunneling phenomenonin the low-temperaturedynamicsof random magnets.

Wenote that the specificproperty of theNumber Partitioning problem (that distinguishes

it from the other NP-completeproblems)is a very weakdependenceof PT(_']Q) on _ for not

too large values of f2', f2 << v/r(n - r) that takes place for all values of r E [1, n - 1]. This

rapid fall-off of correlations during the local search (both classical and quantum) is a reason

that the exponential complexity of optimization algorithms for the Number Partitioning

problem can be seen already for the relatively small values of n < 15 (cf. Fig.5).

Finally, our analysis of sub-harmonic resonances in the Fourier transform I(s) of the

distribution function P(S2) suggests a possible connection between NPP and the integer

factorization problem. If, for a given set of aj's, there is a number q that satisfies the

condition (Aa) then dividing all numbers aj by q we obtain a new instance of NPP with

numbers kj = aj/q that will be completely equivalent to the old one. It is important that

the precision of the numbers kj is restricted by b - log 2 q. If the value of q is sufficiently

large, log2 q >> b - n, then kj's correspond to a low precision instance of NPP, i.e. to

the computationally easy phase mentioned in Sec. II. This is exactly the case when sub-

harmonic resonances become substantial. One can fix the parameter _ = bin >> 1 in a

high-precision (computationally hard) case and compute, for randomly generated instances

{aj} an approximate greatest common divider, i.e. a largest number q that satisfies (A3). The

distribution of these numbers determines a fraction of high-precision instances of NPP (out

of all possible 2nb problem instances) that really belong to a low-precision (computationally
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easy) "phase".

Advance knowledgeof this information would be of importance if one is using NPP

for encryption purposes[17], especiallybecauseNPP is otherwise a very difficult problem

for both quantum and classicalcomputers [29]. It is not obvious at this stagewhat the

asymptotic form of this distribution will be in the limit of large n (cf. Fig. A).

We are not aware of any classical algorithm that could verify if such a number q exists

for a given set of aj in a time polynomial in both n and b. However, on a quantum computer

one can apply a Shot algorithm to test in polynomial time if strong sub-harmonic resonances

exist. This question is deferred to a future study.
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APPENDIX A: SUB-HARMONIC RESONANCES

We note that function I(s) in (5) can also have additional sharp resonances in the range

0 < Isl _< 2b. To understand their origin we consider first a particular case when rational

b-bit numbers al, a2,... ,an all have a number q > 2 -b as a ':common divisor", i.e., there

exist integers kl, k2,..., kn such that

al a2 an

kl k2 kn
(A1)

In this case additional resonances of I(s) occur at the multiples of 7c/q. Assume now that

q is no longer an exact divisor of numbers aj but all the residues of the divisions aj/q

are sufficiently small. Then contributions from the additional resonances at s _ rnTc/q

(m = 1, 2,...) to the integral in (5) can be estimated as follows (for simplicity we give a

result for the case E << nl/2):

2n _o (rn 7r'r]'_
r(0) _ 4271__tcr2(0 ) e-"/(q) m=l_ _ _' 2q ,] (-1)raP (X2)

P = , 7(q) = -_ q - v/Tr na2(O) q
j=t

Here [x] and {x} denote integer and fractional parts of a number x, respectively. If the total

"dephasing" factor e -'_(q) _ 1, then contribution (A2) cannot be neglected in the steepest-

descent analysis of (5) (in general, on should keep contributions from all divisors q with

small dephasing factors e-v(q)).

{__2_] _ 1 for q >> 2 -_ and it decays to zero
We note that the window function _\ 2q ]

at smaller values of q. We studied numerically the greatest root qma_ of the the algebraic

equation

7(q) = % (A3)

for a fixed value of 7c _< 1. For the sets of random b-bit numbers aj the dependence of

the mean value of qmin on the problem size n < b is shown in Fig. 6. For n << b we have

exponential decrease of qm_x with n and for larger values of n < b the value of qmin steeply

drops to 1. According to the discussion above, in order to neglect the saddle-points with

s > 0 in (5) (additional resonances) the value of qmin should satisfy the following condition

in the asymptotic limit b -+ ec:

qmax_max[2-n,2-b], 1 <<n<<b, (A4)
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with % fixed at somesmall constant value. Becausethe precision b that we used in the

simulations was not very high (limited by machine precision) it is not possible to obtain the

asymptotic form of the dependence of qmin on /t in the range given in (A4). Neither we can

describe the shape of the plot in Fig. 6 analytically in that range. However, it appears from

the figure that the condition (A4) is satisfied for sufficiently large n.

225

220

qmin 215

21o

25

20
210 215220 225

210 215 220 225

n

FIG. 6: Log-Log plots of the mean value of the largest root of Eq. (A3) qmin vs n. Three sets

of data points are plotted. Each set of points represents averaging over 25 randomly generated

instances of NPP. Precision of the random numbers aj is 30 bits and the value of % = 0.5. Dashed

line corresponds to the plot of const x 2 -n vs n. Insert: Variance of the log 2 q vs n based on 25

sample points for each n. Distribution of qmin values become very broad when the mean drops to

qmin " 1.

APPENDIX B: PROPERTIES OF THE CONDITIONAL DISTRIBUTION OF

SIGNED RESIDUES IN NPP

We perform the summation over the spin configurations in Eq. (17) with Eq. (15) taken

into account. Similar to the derivation of Eq. (5) we use integral representation for delta

function and obtain

P,(a,_') = 4rc----5-C _ gj(s,s'), (B1)
(x) cx] j

= l-Icos(a,(s- × I cos(aj( + s')) × e
jEJ j_J
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Here the sum is over all possible subsets J = {jl, j2,..., jT} of length r obtained from the

set of integers j = 1, 2,..., n. Window function _(x) is defined in (5). After the change of

variables

, (B3)X t = Snt-St_ X -= S--8,

we obtain from (B1) that Ua(s, s') factorizes into a product of two terms

l;j(x) = exp ( iX(f_ _ fy)

Uj(s,s') = Vj(x)_(x')

)Hcos(acx), _j(x')=exp (ix'(f_-2-+fY))Hcos(ajx')"
jCJ J_J

(m)

In what follows we will analyze several limiting cases.

r,n- r >> l:

In this case both functions Fj(x) and Fj(z') are very steep and similar to the analysis

in Sec.IIA integrals in (B1) can be evaluated by the steepest descent method. With the

appropriate choice of the coarse-graining windows Aft, AfY in (B1) (see below) contribution

to the integrals comes from the vicinity of the point (x = 0, x' = 0). Near this point we use

Hcos(ajx).._ex p( r(x2J)2 ) IIcos(ajx)_exp(_ (n-r)(x'KJ)2) (B5), 2

jeJ J_J

where

_ 2 (_j)2 1 Ea_.1 Eaj, -- n- r(crJ)2 = r

jEJ J_J

Since each sum here contains a large number of terms we obtain for i.i.d, random numbers

al,...,a,_ (cf. (6))

(oj)_ _ £(0) + o (_), (_j)2 _ o2(0) + 0 ( 1 )n --7
(BT)

where a2 = @2) is given in (6).

in (B1) by unity, we compute the Gaussian integrals in (B1) and obtain

1 1 ((f_ _ fy)2 (__+__,)2 _ ]
+

Pr(a'a') = 47ca2(0)v/r(n - r) exp 8(72(0 ) r n - r /

The size of the coarse-graining windows in (B1) is chosen to satisfy the conditions

Using Eqs. (B4)-(BT) and replacing the window functions

(B8)

(:)-'2-_ <</xr_ A_' << v/r(n - r)
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From Eq. (B8) and Eq. (6) one can directly obtain the conditional distribution function

P,(ala')
1 (fi'2 q_fi)2] (B9)

P_(_'l_)- _/2_(q)exp 2_(q) j

r=l; r=n-l:

For r = 1 function _j(x') contains a product of n - 1 terms and is very steep. The

corresponding integral over x' in (B1) should be taken by the steepest descent method.

However ],'j(x) simply oscillates at frequencies (f2 - f_')/2 + aj and the integral over x in

(B1) should be evaluated using the corresponding oscillating factors. In the opposite case

r = n - 1, function ]2j(x) is very steep and the integral over z in (B1) should be taken

by steepest descent. But the integral over x' there should be evaluated using Fa(z') that

oscillates at the frequencies, (f_ + fY)/2 + aj. Finally, one can obtain using i.i.d, numbers

aj's in [0, 1] interval"

l[o(f_:f_, 2) @(f_ f Y (1) (r 1, r_-l). (Be0)P,(f_'lf_)= _- + - =F - 2)] + (.9 , --

The minus (plus) sign in (B10) corresponds to r = 1 (r = n - 1). Similarly one can obtain

the result for any fixed value of r or n - r (that does not scale with n). For [f_l, I_'1 _<1

(B10) is reduced to (19).

Numerical simulations of conditional distribution Pr,z(_')

We compute the following integrated quantity:

1 fon'drlPr,,.(q) (Bll)Q=_

for different values of r, fi' and different strings z with E_. << 1. Numerical results are

compared in the insert to Fig.2 with theoretical result below obtained using P_(fYlf_) from

Sq. (B9)

fo ( _' ) (B12)-21 a' dqP,(ql0) = erf or(q) _ "

Theoretical and numerical curves nearly coincide with each other. To accurately compare

the normalization factor in (B9) (see also (20)) we compare the theoretical results with

numerical values of P,,,.(0) for different r and strings z corresponding to E_. << 1. The
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results are plotted in Fig. 2.
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